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ABSTRACT 1 

Conducting statistical analysis is a major component of sharing results. Investigators collect enormous amounts of 2 

information when testing a hypothesis and translate that data with statistical tests to present their findings. 3 

Scholarship of teaching and learning (SoTL) research should adhere to the same rigorous standards required of 4 

those dealing with other areas of scholarship and as such, this paper discusses seven common statistical errors likely 5 

to be encountered in the scientific literature. While not an all-inclusive list, the following represents areas with a 6 

high potential for statistical error and misinterpretation in clinical research and SoTL. More specifically, this paper 7 

demonstrates the consequences of assuming normal distributions, examines each component of sample size 8 

calculation and its impact on a study, reviews the historical emphasis on p values, examines the components of 9 

subgroup analyses, describes methodology to avoid false interpretations of presented results, and identifies 10 

resources for ongoing professional development in biostatistics. 11 

INTRODUCTION 12 

In scientific research, conducting statistical analysis is a major component of sharing results. Investigators 13 

collect enormous amounts of information when testing a hypothesis and translate that data with statistical tests to 14 

present their findings. The accuracy and validity of the results are reviewed rigorously to ensure correctness before 15 

being added to the scientific literature. Healthcare providers and educators alike then utilize this literature to make 16 

informed decision based on the statistical inferences presented. Unfortunately, an alarming rate of error in statistical 17 

analysis exists in the literature resulting in misinformation and misinterpretation. Concern for the implications of 18 

these errors has been raised for more than 30 years.1,2  19 

Pocock et al reviewed 45 articles published in the British Medical Journal, the Lancet, and the New England 20 

Journal of Medicine in 1987 and demonstrated the prevalence of statistical problems even in the most respected 21 

journals.2 In an Internal Emergency Medicine article in 2013, Costantino et al countered, stating that of 125 articles 22 

reviewed none of the errors would have changed the results of the work. However, in their analysis Costantino et 23 

al reports excluding ‘more significant items such as study design, outcome, and bias’ and still found that 82% of 24 

articles analyzed contained errors.3  25 

The Accreditation Council for Pharmacy Education has set forth standards for colleges of pharmacy for 26 

educating students about biostatistics and study interpretation.4 Yet a steady rise in published errors exists with a 27 

concurrent decline in practitioner confidence.5-7 In 2009, Bookstaver et al conducted a survey of postgraduate year 28 
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1 (PGY1) pharmacy residents consisting of 10 knowledge-based biostatistics and study design questions, as well as 1 

Likert-type scales to assess confidence.7 Of those who responded to at least one knowledge assessment (n=166), 2 

the overall mean biostatistics knowledge score was 47.3% ±18.50%.7 In nearly all fields of healthcare education, 3 

low levels of confidence in regard to biostatistics are reported, leading students, residents, practitioners, and 4 

educators to rely on authors’ abstract conclusions to interpret studies.5-7 The overall perception of confidence and 5 

training in statistical analysis may impact junior and senior faculty alike, regardless of their level of training.  6 

As a service to its authors, the American Journal of Pharmaceutical Education (AJPE), published a special 7 

article outlining several areas of improvement to increase likelihood of publication in response to commonly noticed 8 

flaws in submitted manuscripts.8 In the 2016 article, Persky and Romanelli provided suggestions to potential authors 9 

and reviewers, including recommendations for statistics and p values, adding to previously published guidelines 10 

regarding the scholarship of teaching and learning (SoTL).8-10 This article is a follow-up to those papers to further 11 

discuss common errors in statistical analyses of clinical research and SoTL.  12 

SoTL should adhere to the same rigorous standards required of those dealing with other areas of scholarship 13 

and as such, this paper discusses seven common statistical errors likely to be encountered in the scientific literature.9 14 

While not an all-inclusive list, the following represents areas with a high potential for statistical error and 15 

misinterpretation in clinical research and SoTL. More specifically, this paper demonstrates the consequences of 16 

assuming a normal distribution of data, differentiates the components of a sample size calculation and how 17 

components impact conclusions from a research study, challenges the historical emphasis on p values, examines 18 

the components of a well-done subgroup analysis, describes methodology to avoid false interpretations of presented 19 

results, and identifies resources for ongoing professional development in biostatistics.  20 

COMMON STATISTICAL ERRORS IN THE LITERATURE 21 

As articulated by April McGrath in her 2016 article in Teaching and Learning Inquiry, “Being aware of 22 

these factors…will put scholars in a better position to evaluate…their own research and that of others.”11 23 

Missing the distribution. When reporting continuous variables, it is common for researchers to summarize 24 

the data with a mathematical mean. Calculating the mean allows for quick comparisons between groups and gives 25 

readers a sense of what the ‘average’ value is for any given variable. The underlying assumption when calculating 26 

a mean is that the continuous data is normally distributed. By definition, about 67% of the values of a normal 27 

distribution are within ±1 standard deviation of the mean, and about 95% are within ±2 standard deviations.12 28 
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Unfortunately, most biological data is not normally distributed. Issues then arise when readers see a mean and 1 

standard deviation reported and falsely assume that the values from the sample are normally distributed, when in 2 

reality they may be skewed due to outliers. To demonstrate this, imagine a group of 5 students have taken an exam 3 

and receive scores of 96, 89, 94, 97, and 13. In assessing the exam for appropriateness, you review the average test 4 

score (77.8%) and question the difficulty of the exam. This is a simple example, but it is clear to see that these 5 

scores are not evenly distributed and suggested a falsely lower average score when in reality the average was much 6 

more likely to be in the mid-90s. In addition to misrepresenting descriptive statistics, falsely assuming a normal 7 

distribution of continuous variables may yield inaccurate results from statistical analysis. To appropriately analyze 8 

non-normally distributed data, researchers must use non-parametric tests, rather than the parametric tests used for 9 

normally distributed data.13 10 

There are multiple ways to avoid this common error. What is likely the most simple solution to avoid this 11 

error is to create a histogram of the data which is being collected. This graphical representation will allow a visual 12 

check of normal distribution. If all data points are available, another simple check for normal distribution is a 13 

comparison of the mean, median, and mode. If the data is normally distributed, these three values will be equal. As 14 

a final possibility to test the normality of data, goodness-of-fit there statistical tests may be run including the 15 

Shapiro-Wilk and Kolmogorov-Smirnov tests.14 Unfortunately, all of these assessments require authors to present 16 

all of the data and readers are often left to assume that sample distributions are normal.  17 

Details of the sample size calculation are key to making accurate conclusions. Calculating an 18 

appropriate sample size (n) is an integral step in the research process.15 Deciding the number of people or other 19 

experimental units to involve in a study is a seemingly simple task. However, sample size calculations must balance 20 

the financial burden of increasing sample size while maintaining the ability to detect an important effect should one 21 

exist. In other words, a sample size too large wastes money, time, and resources and a sample size too small may 22 

lack the power to answer the study question.15 There are four components of a sample size calculation: alpha (type 23 

I error), beta (type II error), the minimal relevant difference, and the baseline event occurrence. Optimizing the 24 

sample size is challenging and as such, the details of the sample size calculation are key to making accurate 25 

conclusions as a reader. It is important to note here that a statistical test can either reject or fail to reject a null 26 

hypothesis, but can never prove the hypothesis to be true.13,16 Any claims by the author of ‘proving the alternate 27 

hypothesis’ should raise concern. 28 
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 The values of alpha and beta are traditionally chosen to be 0.05 and 0.20, respectively. These values, while 1 

arbitrary, are conventional in the scientific literature.13 Any other stated values should be investigated by the reader, 2 

if no compelling explanation is given in the text. The value of alpha establishes the acceptable probability of a type 3 

I error for the given hypothesis test. Type I error is falsely rejecting the null hypothesis when it is true, therefore, 4 

with a traditional alpha of 0.05, the researchers accept a <5% chance of finding a false-positive conclusion.15,17 Beta, 5 

or type II error, is the probability of failing to reject the null hypothesis when it is false.17 The conventional beta of 6 

0.20 tells readers that the researchers accept a <20% chance of a false-negative conclusion.15 Power is the 7 

complement of beta (1-beta). It is equivalent for investigators to report a power of 0.80 or 80% versus stating a beta 8 

of 0.20 or 20%. 9 

 The third component of a calculating a sample size is determining the smallest effect of interest. The concept 10 

of estimating an effect size prior to collecting the data seems counterintuitive. However, the estimated effect size is 11 

critical to the calculation of the number of patients, students, or data points needed for the study. Since sample size 12 

is inversely proportional the square of the expected effect size, even small changes in the expected difference have 13 

major implications on the sample size required.15 To demonstrate this, a hypothetical example is provided. Say you 14 

created a training program for pharmacy residents to increase publication rates of pharmacy resident projects. As a 15 

proud creator, you believe that this program can increase publications by 25%. To test your hypothesis, you 16 

randomize residents to either receive the course or complete standard residency training. Completing a sample 17 

calculation (Table 1) yields a required sample of 58 residents per group. While recruiting 216 residents may be 18 

feasible, estimating that your training will increase publication rates from 50% to 75% is unrealistic and will likely 19 

result in failure to reject the null hypothesis of no statistical difference between residents that completed the training 20 

and those who did not. Estimating smaller effect sizes allow for greater sensitivity to detect a difference, but requires 21 

exponentially more data points (Table 1). As a researcher and a reader, it is important to recognize this balance of 22 

producing accurate results, while maintaining a reasonable sample size. 23 

The final component of the sample size calculation is baseline event and variance for the population. 24 

Investigators primarily utilize previous studies or pilot studies and their own knowledge and opinions to estimate 25 

the difference of baseline event and variance.17 This has inherent unreliability, however, it is the only way to 26 

preemptively estimate effects in new populations.  27 
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Sample size calculation is integral in providing adequate power to detect differences between groups. Yet, 1 

only 16% of RCTs in major journals had sufficient statistical power (80%) to detect 25% relative difference and 2 

only 36% were powered to detect a 50% relative difference.18 When reviewing positive claims, remember that the 3 

details of the sample size calculation are key to making accurate conclusions. 4 

Don’t overly rely on p values: other measures/methods may tell you much more. As stated in Perskey 5 

and Romanelli’s Insights, Pearls, and Guidance on Successfully Producing and Publishing Educational Research, 6 

“…impactful published papers almost always have statistical analysis,” and that means p values are plentiful.8 P 7 

values are considered to be the evidence in favor of random chance as an explanation for a result.17 This 8 

mathematical probability is then compared to the predetermined alpha, which as stated earlier is an arbitrary cutoff. 9 

Then, an all-or-none decision is made as to whether the difference between groups was statistically significant or 10 

not. P values are especially prone to misinterpretation and as academics it is imperative to recognize that even 11 

statistically significant results tell only part of the story. 12 

First, it is necessary to recognize that statistical significance does not measure effect size or relevance and 13 

importance of a result. Statistical significance is highly dependent on sample size and even very small effects can 14 

appear statistically significant when the sample size is large enough.17 In the ALBIOS trial, a multicenter 15 

randomized controlled trial with 1818 ICU patients with septic shock or severe sepsis, the albumin group had a 16 

significantly lower heart rate than those in the crystalloid group (p=.002).19 Shown only in the appendix, however, 17 

are the heart rates of the two groups; 89±20 versus 92±20 beats per minute.19 As a reader, it is imperative to 18 

differentiate statistical significance from a relevant result in the field of study. Similarly, a non-statistically 19 

significant result cannot be equated to a statement of no effect. A p value of p=.049 (assuming an alpha of .05) 20 

would be considered significant, whereas p=.051would not be statistically significant. In the same manner that a 21 

decrease of three beats per minute in heart rate was statistically significant, but not clinically relevant in the ALBIOS 22 

trial, a meaningful difference could yield a non-significant result in a different study. A careful assessment of effect 23 

size is always necessary and is most easily conducted with review of the confidence intervals. Another erroneous 24 

practice is equating the relative size of a p value to being more or less significant or likely to be true. P values do 25 

not measure the probability that the hypothesis is true, or the probability that the result was a random effect.20 26 

Therefore, p=.000001 is no more significant than p=.01, nor is the result any more likely to be true.  27 



 7 

 Lastly, p values are only credible if all the assumptions from the statistical test were met. Since p values 1 

are a direct output from statistical analysis, the underlying assumptions for the respective test must be met for the p 2 

value to be accurate. Examples may include using a parametric test for non-normally distributed data or applying a 3 

linear regression without first verifying that the relationship between variables is indeed linear.20 P values alone 4 

don’t provide evidence with regard to a hypothesis, yet unfortunately, many articles only report p values.21 Be sure 5 

to examine the whole picture when making conclusions from p values. Look for effect sizes and confidence intervals 6 

to aid in your assessment. These convey two critical factors that a p value lacks, the magnitude of an effect and the 7 

relative importance of an effect. 8 

Multiple hypothesis testing is not without risks. Testing multiple hypotheses may seem benign. Costs 9 

associated with conducting research to answer study questions are high and increase constantly. Logically, 10 

researchers want to maximize the return on investment and answer as many questions as possible with the data they 11 

collect. Technology continues to advance and the wide availability of user-friendly statistical software have made 12 

it possible for investigators to run hundreds of tests with ease. Using software in this manner is inappropriate and 13 

introduces significant risk of error into the analysis. This is demonstrated in Figure 1, where type I error is plotted 14 

as a function of the number of subgroup analyses run. The risk of error in running 100 subgroup analyses may seem 15 

obvious, but it is not uncommon for studies to run 20 subgroup analyses. Conducting 20 hypothesis tests increases 16 

the probability of type I error from .05 to .64 (assuming a=.05). When reviewing work with multiple subgroup 17 

analysis, be aware that the likelihood that at least one of the analyses will be ‘statistically significant’ by chance 18 

alone also increases. Redundant or repetitive statistical analysis of research data conducted in an attempt to find 19 

significance is often referred to as ‘data dredging.’22 20 

 Outcomes and subgroups should be determined a priori, or before any data collection and analysis has 21 

occurred. This is not always possible and often times analyses are performed post-hoc, or after data has been 22 

collected. In this case, the number of analyses, the selection process for these analyses, and the significant and non-23 

significant results of these analyses should all be disclosed by the author.16 Authors may also use statistical 24 

correction factors, such as the Bonferroni or similar procedures, to adjust the levels of significance accordingly 25 

when conducting multiple statistical tests or comparisons.22 Corrections should be stated by the author so that 26 

readers and reviewers can be assured that significance levels have been adjusted appropriately to be more 27 

conservative.23  28 
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Be appropriately skeptical of subgroup analyses. Subgroups analysis can be defined as analysis of 1 

intervention effects within subgroups of the sample. Subgroups are beneficial because they can expand the number 2 

of questions that may be asked from a limited data set, such as, ‘Did the sicker patients benefit from the drug?’ or 3 

‘Do certain educational strategies benefit certain subgroups of students?’ However, the analysis of subgroups should 4 

be approached cautiously. The Journal of the American Medical Association published a ‘users guide’ to subgroup 5 

analysis and provide a series of questions that should be asked when assessing the validity of subgroup analyses: 6 

Can chance explain the apparent subgroup effect?; Is the effect consistent across studies?; Was the subgroup 7 

hypothesis one of a small number of hypotheses developed a priori with direction specified?; and Is there strong 8 

preexisting support?24 9 

In addition to the inherent risk of error associated with testing multiple hypotheses previously described, 10 

readers must be appropriately skeptical of an author’s claims based on subgroup analysis. One limitation of 11 

subgroup analysis is the possibility that the differences or associations found could be spuriously positive.12 For 12 

example, in 1988 the Second International Study of Infarct Survival (ISIS-2) investigators reported an apparent 13 

subgroup effect in the randomized trial comparing streptokinase and aspirin in suspected cases of acute myocardial 14 

infarction.25 “Patients … born under the zodiac signs of Gemini or Libra did not experience the same reduction in 15 

vascular mortality attributable to aspirin that patients with other zodiac signs had.”25 Obviously, there is no 16 

biological explanation for these statistically significant findings and the investigators made this claim to 17 

demonstrate the increased risk of type I error when conducting subgroup analysis.24,25 Another major disadvantage 18 

of subgroup analysis is the risk of making a type II error due to smaller sample size in the subgroup. Readers may 19 

interpret the lack of a difference between groups to mean that there is no difference when in reality a difference 20 

may exist and the group lacks the statistical power to detect it. Subgroups that are prespecified a priori, or at 21 

baseline, increase the validity of the analysis. In these instances, stratification and regression techniques may be 22 

used to adjust the overall comparison for subgroups.24  23 

As a reader, a certain level of skepticism is necessary when reviewing the results of any subgroup analysis. 24 

Subgroup analyses are highly susceptible to false positives from multiple comparisons, false negatives due to 25 

inadequate power, and often lack transparency in the validity of the conduction.24 Due to these limitations the 26 

information garnered from the analysis of subgroups, even under the best circumstances, should be reserved for 27 

generating hypothesis for further study.  28 
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Details of modeling are just as important as the rest of the methods section. Even the simplest models, 1 

examining the relationship between only two variables, are prone to error.17 One of the first steps in evaluating a 2 

model is assessing its plausibility. Correlation does not confer causation. This adage may seem obvious for variables 3 

that appear correlated without any reason for connection. However, when looking at multiple factors, correlations 4 

can be deceptive. For instance variable X may demonstrate a correlation statistical significance with variable Y, 5 

solely because X and Y  are both dependent on a third variable Z.26 When presenting results, the investigator should 6 

provide details on the modeling procedure. These explanations should be thorough and include the methods used 7 

to create the model, the assumptions of the data that were made, the limitations of applicability of the model, 8 

potential sources of bias, and the methods of validation that were used in the creation of the model.26 In addition to 9 

these criteria, the authors should present an assessment of the fit of the model. Use of a linear regression model is 10 

predicated on the fact that the relationship between variables is in fact linear. A variable may yield a statistically 11 

significant linear regression despite the underlying relationship not being linear.17 This should be assessed with an 12 

analysis of ‘residuals’. Further testing of model fit should be described by goodness-of-fit tests, such as the Hosmer-13 

Lemeshow test.27 This test measures the statistical significance of any differences between the observed and 14 

predicted outcomes over the risk groups. A model that is properly fitted with yield a non-significant difference and 15 

suggest that the model is appropriate.27 This test can be easily misinterpreted. For instance, a retrospective 16 

observational study reviewing two different forms of anticoagulation in patients with a traumatic brain injury 17 

claimed “an unexpected finding … was the superiority of LMWH over UH with regards to mortality” despite a 18 

resulting Hosmer-Lemeshow goodness-of-fit test of p=.066.28 Readers should also recognize collinearity, two 19 

variables put in the model that measure the same thing and predict each other.  20 

Testing too many covariates to fit a model can lead to ‘over-fitting’ of the model. As a general rule of 21 

thumb, for every covariate to be tested, there should be somewhere between ten and twenty outcomes of interest. 22 

Similar to ‘data dredging’ of multiple hypothesis testing, the number of covariates you include in the model increase 23 

risk of spurious findings. This is not uncommon to see in the literature, but a striking example is the retrospective 24 

analysis of postoperative urinary tract infections by Sultan et al.29 This study had a large sample size (n=891) of 25 

patients who had a Foley catheter placed by either a surgical resident, operating room nurse, or medical resident.29 26 

Sultan et al claim that medical students need more monitoring because “patients with Foleys placed by medical 27 

students were at over 4-fold increased risk of [catheter-associated urinary tract infection]” (OR 4.09, p=.02) 28 
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compared to nurses.29 The issue in making this claim is that only 2.4% of sample experienced the outcome of interest 1 

and the authors put 20 factors into a logistic regression model where there were only 22 events. In this instance, 2 

parameters are biased toward the extremes when the number of variables approaches the number of events and it 3 

becomes nearly impossible to meaningfully conduct a regression. Correcting for these errors would only widen 4 

confidence intervals for the studies claim that medical students need more supervision. Taking all of this into 5 

account, it is evident that the results of the author’s multivariate analysis (OR 4.09, CI 1.22-13.7; OR 2.16, CI 0.75-6 

6.2) simply does not support the conclusion.29 Like many of the previously listed, the statistically significant 7 

findings generated from modeling should be further researched, rather than a basis for conclusive findings.   8 

It’s relatively risky...but it doesn’t have to be. An important distinction to make when reviewing and 9 

interpreting estimated effect size between two groups is the distinction between the odds ratio, relative risk, and 10 

absolute risk for a dichotomous outcome.30 These summary statistics are not interchangeable and result in different 11 

values due to the different calculations required. To start, odds are the probability of occurrence of an event or 12 

outcome compared to the probability of the event or outcome not occurring. The odds ratio (OR) is then the ratio 13 

of the odds of an event or outcome occurring in one group to the odds of the same event or outcome occurring in 14 

the other group. Odds ratios are the estimate of effect size for retrospective data.31 Alternatively, for prospective 15 

data results can be expressed in terms of risk, the probability of occurrence of an event or outcome. Typically risk 16 

is presented as risk reduction and can be expressed in relative terms as relative risk reduction (RRR) or absolute 17 

terms as absolute risk (ARR) and number needed to treat (NNT).31 RRR estimates the percentage of baseline risk 18 

that is reduced as a result of an intervention.31 The estimate, however, only applies to the study population and has 19 

a tendency to over-estimate the beneficial effects in the intervention group.30  20 

Despite recommendation from the CONSORT guidelines for randomized controlled trials, authors do not 21 

always report both the relative and absolute effect sizes.32 Calculating risk in absolute terms provides context for 22 

the reduction of risk of an outcome by accounting for likelihood that the event will occur in the population at large. 23 

Since authors often do not report ARR, it is necessary to calculate it to accurately assess the results of the study. To 24 

demonstrate ARR calculation from RRR, consider this hypothetical example provided by Streiner and Norman in 25 

their Chest commentary looking at the relative risk of death between two groups.30 In the hypothetical study, 20 26 

individuals died in the intervention group (n=100) and 40 individuals died in the control group (n=100). The relative 27 

risk of death in the intervention group is half that of the control group. Then, instead of a sample of 200 individuals, 28 
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the hypothetical study was conducted in 20,000 with the same absolute number of deaths, respectively, yielding 1 

RR=0.5 again. This clearly demonstrates how only reporting the relative risk can be very misleading. Calculating 2 

the absolute risk reduction incorporates the baseline risk associated with the outcome (see citation for calculation).30 3 

In the first example, ARR=0.2, or a 20% absolute risk reduction in death in the intervention arm. In the second 4 

example, with the same relative risk, the absolute risk reduction is 0.002, or a 0.2% absolute reduction of risk of 5 

death. Converting these values into NNT, the number of participants required to receive the intervention before 6 

preventing one outcome, further demonstrates this difference (NNT=5 vs. NNT=500). 7 

 Speaking to results in relative terms is risky. The example in Chest clearly demonstrates how relative risk 8 

reduction can be a massive overestimate of effect size.30 Calculating risk and risk reduction in absolute terms, if not 9 

presented in the manuscript, is an easy calculation that should always be conducted as a reader to draw appropriate 10 

conclusions about the study.  11 

CONCLUSION 12 

The misinterpretation and abuse of statistical analyses has been established many years, yet their presence 13 

is nearly ubiquitous. Only about 20% of published manuscripts are free from statistical error.33 Despite an increasing 14 

number of guidance documents/calls for standardization, the key problem remains that there are no interpretations 15 

of these concepts that are simultaneously simple, intuitive, correct, and foolproof.21 As previously mentioned, this 16 

article is not an all-inclusive list of statistical errors in the literature. There are, however, many additional resources 17 

available to foster knowledge in this area, some of which are given in Table 2. Quality instruction and teaching are 18 

the most important goals for higher education, but research efforts help shape best educational practices.10 19 

Statistical analyses are a key part of the evidence for making conclusions that impact patient care, 20 

educational methods, and allocation of resources. While cumbersome and often complex, formal training in 21 

statistics is not a requirement for due diligence as a scholar. This article serves as a general primer so that commonly 22 

encountered mistakes and misinterpretations of academic research will not continue to plague authors and readers 23 

alike. Recent increases in the demand for evidence based decision making and quality improvement have placed a 24 

greater emphasis on producing and evaluating the scientific literature.8,10 The goal of this work is to provide authors, 25 

instructors, and readers of the scientific literature a resource to avoid common pitfalls of statistical analysis in the 26 

ever evolving field of health profession education. As academics, a focus on the interpretation and execution is an 27 

integral part of practice and should be part of continued professional development. 28 
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Tables 1 

Table 1. Pearson Chi-square Test for Proportion Difference† 
 Difference of 25.0% Difference of 12.5% Difference of 6.25% 
Group 1 proportion 0.5 0.25 0.25 
Group 2 proportion 0.75 0.375 0.3125 
Number of sides 2 2 2 
Null proportion difference 0 0 0 
Computed N per group 58 215 812 
Actual power 0.802 0.801 0.800 
† Assuming asymptotic normal distribution, normal approximation method for calculation, a=0.05, and b=0.20 

 2 
 3 
 4 
 5 

 6 

Table 2. Resources for Reviewing Biostatistics and Study Design† 
Formal Resources  

Statistical software resources 
ASHP Foundation 
ACCP Programs 
Several books 

Tools for Developing the Thought Process 
Editorials 
Letters to the Editor 
JAMA (Guide to Statistics and Methods) 
BMJ (Endgames) 
Peer review 
Practice and listen 
Ask questions 

†  See supplemental content for links 


